Large enhancement of light extraction efficiency in AlGaN-based nanorod ultraviolet light-emitting diode structures
نویسنده
چکیده
Light extraction efficiency (LEE) of AlGaN-based nanorod deep ultraviolet (UV) light-emitting diodes (LEDs) is numerically investigated using three-dimensional finite-difference time-domain simulations. LEE of deep UV LEDs is limited by strong light absorption in the p-GaN contact layer and total internal reflection. The nanorod structure is found to be quite effective in increasing LEE of deep UV LEDs especially for the transverse magnetic (TM) mode. In the nanorod LED, strong dependence of LEE on structural parameters such as the diameter of a nanorod and the p-GaN thickness is observed, which can be attributed to the formation of resonant modes inside the nanorod structure. Simulation results show that, when the structural parameters of the nanorod LED are optimized, LEE can be higher than 50% and 60% for the transverse electric (TE) and TM modes, respectively. The nanorod structure is expected to be a good candidate for the application to future high-efficiency deep UV LEDs. PACS: 41.20.Jb; 42.72.Bj; 85.60.Jb.
منابع مشابه
Thermally enhanced blue light-emitting diode
Articles you may be interested in Performance enhancement of blue light-emitting diodes with a special designed AlGaN/GaN superlattice electron-blocking layer Appl. Raman and emission characteristics of a-plane InGaN/GaN blue-green light emitting diodes on r-sapphire substrates J. Thermally stable and highly reflective AgAl alloy for enhancing light extraction efficiency in GaN light-emitting d...
متن کاملEvaluation of Light Extraction Efficiency of GaN-Based Nanorod Light-Emitting Diodes by Averaging over Source Positions and Polarizations
Light extraction efficiency (LEE) of GaN-based nanorod blue light-emitting diode (LED) structures is investigated using finite-difference time-domain (FDTD) simulations. When the LEE is calculated for different source positions inside the nanorod, the LEE is found to depend strongly on the source positions and the polarization directions for each source position, implying that the LEE of nanoro...
متن کاملDistinct U-shape efficiency-versus-current curves in AlGaN-based deep-ultraviolet light-emitting diodes.
The efficiency of an AlGaN deep-ultraviolet light-emitting diode with peak emission wavelength of 285 nm is investigated as a function of current over a wide range of temperatures (110 K to 300 K). We find that the efficiency-versus-current curve exhibits unique and distinct features over the entire temperature range including three points of inflection. At low temperatures, the change in slope...
متن کاملAlGaN-based ultraviolet light-emitting diodes grown on AlN epilayers
AlGaN-based deep-ultraviolet light-emitting diode (LED) structures, which radiate light at 305 and 290 nm, have been grown on sapphire substrates using an AlN epilayer template. The fabricated devices have a circular geometry to enhance current spreading and light extraction. Circular UV LEDs of different sizes have been characterized. It was found that smaller disk LEDs had higher saturation o...
متن کاملDegradation mechanism beyond device self-heating in high power light-emitting diodes
Related Articles Temperature-dependence of the internal efficiency droop in GaN-based diodes Appl. Phys. Lett. 99, 181127 (2011) Localized surface plasmon-enhanced electroluminescence from ZnO-based heterojunction light-emitting diodes Appl. Phys. Lett. 99, 181116 (2011) Performance enhancement of blue light-emitting diodes with AlGaN barriers and a special designed electronblocking layer J. Ap...
متن کامل